Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> We perform a model-independent analysis of the dimension-six terms that are generated in the low energy effective theory when a hidden sector that communicates with the Standard Model (SM) through a specific portal operator is integrated out. We work within the Standard Model Effective Field Theory (SMEFT) framework and consider the Higgs, neutrino and hypercharge portals. We find that, for each portal, the forms of the leading dimension-six terms in the low-energy effective theory are fixed and independent of the dynamics in the hidden sector. For the Higgs portal, we find that two independent dimension-six terms are generated, one of which has a sign that, under certain conditions, is fixed by the requirement that the dynamics in the hidden sector be causal and unitary. In the case of the neutrino portal, for a single generation of SM fermions and assuming that the hidden sector does not violate lepton number, a unique dimension-six term is generated, which corresponds to a specific linear combination of operators in the Warsaw basis. For the hypercharge portal, a unique dimension-six term is generated, which again corresponds to a specific linear combination of operators in the Warsaw basis. For both the neutrino and hypercharge portals, under certain conditions, the signs of these terms are fixed by the requirement that the hidden sector be causal and unitary. We perform a global fit of these dimension-six terms to electroweak precision observables, Higgs measurements and diboson production data and determine the current bounds on their coefficients.more » « lessFree, publicly-accessible full text available May 1, 2026
-
A<sc>bstract</sc> We study a class of models in which the particle that constitutes dark matter arises as a composite state of a strongly coupled hidden sector. The hidden sector interacts with the Standard Model through the neutrino portal, allowing the relic abundance of dark matter to be set by annihilation into final states containing neutrinos. The coupling to the hidden sector also leads to the generation of neutrino masses through the inverse seesaw mechanism, with composite hidden sector states playing the role of the singlet neutrinos. We focus on the scenario in which the hidden sector is conformal in the ultraviolet, and the compositeness scale lies at or below the weak scale. We construct a holographic realization of this framework based on the Randall-Sundrum setup and explore the implications for experiments. We determine the current constraints on this scenario from direct and indirect detection, lepton flavor violation and collider experiments and explore the reach of future searches. We show that in the near future, direct detection experiments and searches forμ→econversion will be able to probe new parameter space. At colliders, dark matter can be produced in association with composite singlet neutrinos via Drell Yan processes or in weak decays of hadrons. We show that current searches at the Large Hadron Collider have only limited sensitivity to this new production channel and we comment on how the reconstruction of the singlet neutrinos can potentially expand the reach.more » « less
An official website of the United States government
